Modern Monitoring Intraocular Pressure Sensing Devices Based on Application Specific Integrated Circuits

نویسندگان

  • Daniel Piso
  • Patricia Veiga-Crespo
  • Elena Vecino
چکیده

Glaucoma is a neurodegenerative condition that is the leading cause of irreversible blindness worldwide. Elevated intraocular pressure (IOP) is the main risk factor for the development and progression of the disease. Methods to lower IOP remain the first line treatments for the condition. Current methods of IOP measurement do not permit temporary noninvasive monitoring 24-hour IOP on a periodic basis. Ongoing research will in time provide a means of developing a device that will enable continuous or temporary monitoring of IOP. At present a device suitable for clinical use is not yet available. This review contains a description of different devices currently in development for measuring IOP: soft contact lens, LC resonant circuits and on-chip sensing devices. All of them use application-specific integrated circuits (ASICS) to process the measured signals and send them to recording devices. Soft contact lens devices are based on an embedded strain gauge, LC circuits vary their resonance frequency depending on the intraocular pressure (IOP) and, finally, on-chip sensing devices include an integrated microelectromechanical sensor (MEMS). MEMS are capacitors whose capacity varies with IOP. These devices allow for an accurate IOP measurement (up to +/– 0.2 mm Hg) with high sampling rates (up to 1 sample/min) and storing 1 week of raw data. All of them operate in an autonomous way and even some of them are energetically independent.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integrated electrofluidic circuits: pressure sensing with analog and digital operation functionalities for microfluidics.

Microfluidic technology plays an essential role in various lab on a chip devices due to its desired advantages. An automated microfluidic system integrated with actuators and sensors can further achieve better controllability. A number of microfluidic actuation schemes have been well developed. In contrast, most of the existing sensing methods still heavily rely on optical observations and exte...

متن کامل

Highly Integrated MEMS-ASIC Sensing System for Intracorporeal Physiological Condition Monitoring

In this paper, a highly monolithic-integrated multi-modality sensor is proposed for intracorporeal monitoring. The single-chip sensor consists of a solid-state based temperature sensor, a capacitive based pressure sensor, and an electrochemical oxygen sensor with their respective interface application-specific integrated circuits (ASICs). The solid-state-based temperature sensor and the interfa...

متن کامل

Recent Advances in Integrated Photonic Sensors

Nowadays, optical devices and circuits are becoming fundamental components in several application fields such as medicine, biotechnology, automotive, aerospace, food quality control, chemistry, to name a few. In this context, we propose a complete review on integrated photonic sensors, with specific attention to materials, technologies, architectures and optical sensing principles. To this aim,...

متن کامل

Intelligent Mobile Health Monitoring System (IMHMS)

Health monitoring is repeatedly mentioned as one of the main application areas for Pervasive computing. Mobile Health Care is the integration of mobile computing and health monitoring. It is the application of mobile computing technologies for improving communication among patients, physicians, and other health care workers. As mobile devices have become an inseparable part of our life it can i...

متن کامل

A 2.3 μ W Wireless Intraocular Pressure/Temperature Monitor

We present the design of an ultra-low power, wireless pressure/temperature sensing device for continuous intraocular pressure monitoring. The device is wirelessly powered and demonstrates a power consumption of 2.3 W at 1.5 V during continuous monitoring. The chip converts both capacitance and temperature to frequency using a time-interleaved relaxation oscillator, which modulates RF backscatte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012